
JOURNAL OF COMPUTATIONAL PHYSICS 47, 109-129 (1982) 

ADI on Staggered Mesh-A Method for the 
Calculation of Compressible Convection 

KWING L. CHAN 

Applied Research Corporation, 8401 Corporate Drive, 
Landover, Maryland 20785 

AND 

CHARLES L. WOLFF 

NASA/Goddard Space Flight Center, 
Laboratory for Planetary Atmospheres, Greenbelt, Maryland 20771 

Received September 8, 198 1; revised December 11, 1981 

An alternating direction implicit (ADI) method has been applied to a staggered grid for the 
computation of convection in a highly stratified fluid. Since artificial viscosity is not needed, 
subtle effects like the onset of convection can be studied. These computations compare well 
with the 2-D results by Graham and also agree with standard Boussinesq results when taken 
to that limit. Good efficiency has been achieved with a time step hundreds of times larger than 
the stability limit imposed by the explicit treatment of diffusion and the Courant number is 
not restricted to be below 1. The Navier-Stokes equation contains cross spatial derivatives 
which are treated explicitly in most ADI schemes. The destablizing effect of such a practice 
on a 2-D model system with second-order spatial derivative terms only was analyzed and 
found to be not excessive. When the fractional degree of implicitness /3 exceeds 0.572, it is 
sufftcient to stabilize the model system. Our numerical experiments indicate that this is also a 
sufficient condition for the stability of the 2-D Navier-Stokes equation. 

I. INTRODUCTION 

Compressible convection is a common occurrence in nature. The numerical 
simulation or prediction of these kind of flows has wide application in fluid 
dynamics, meteorology, as well as astrophysics; however, it presents challenging 
difftculties. Because of the presence of gravity, the magnitude of the physical 
variables (e.g., density, pressure) often range over many orders of magnitude in the 
domain of interest. The velocity of the flow can be extremely subsonic in some 
important region. If the time step of a numerical scheme using an explicit method is 
restricted by the Courant condition on the sound travel time, the number of cycling 
steps required to advance the flow would be prohibitively large. On the other hand, if 
an implicit scheme is chosen to relax the time step restrictions, the coding becomes 
more complex and the amount of arithmetic per step increases substantially. 
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To avoid the severe restriction imposed by the Courant condition, some people 
employ the Boussinesq approximation [I] or the anelastic approximation [2, 31, of 
the Navier-Stokes equations to avoid acoustical waves. The Boussinesq approx- 
imation is extremely unrealistic for highly compressible flows such as occur in deep 
atmospheres with many pressure or density scale heights (the e-fold vertical 
distances). The anelastic approximation is better; however, the assumption that the 
deviations of the variables from the hydrostatic values are small need not be true. At 
the upper region of an atmosphere, even small perturbations below can have 
devastating influence. Furthermore, the Mach numbers of compressible convection 
are usually not small (see Section III). Therefore, being able to handle the full 
Navier-Stokes equations for flows with a wide range of Mach numbers is a highly 
desirable feature for the numerical simulation of compressible convection. 

In this paper, we describe a scheme which uses alternating direction implicit (ADI) 
method on a staggered mesh to treat this problem. Our motivation in developing such 
a scheme is to study large scale convection in the Sun. At the present stage, as a 
feasibility study, we have only tested this scheme in two spatial dimensions. It proves 
to be an efficient and accurate scheme for our purpose. 

It is necessary to mention that the ICE method introduced by Harlow and Amsden 
[4] is able to handle compressible flow at a wide range of Mach numbers (see the 
applications in Cloutman et al. [5] and Cloutman [6]; also the extension to 3-D by 
Rivard and Torrey [7]). In this paper, however, we shall only discuss our experience 
with the AD1 approach. 

The AD1 methods were first introduced by Peaceman and Rachford [8], and 
Douglas [9]. The original applications were the numerical calculation of the heat 
diffusion equation and the iterative solution of the discretized Laplace equation. 
Birkhoff et al. [IO] have shown that this method is more effective than other iterative 
methods like the Seidel or SOR methods, particularly for refined meshes. Since that 
time, the alternating direction method has been continuously extended to include the 
treatment of general parabolic and hyperbolic problems (see Douglas and Gunn [ 111, 
and references therein). At the same time, several authors have studied some closely 
related techniques called methods of fractional steps [ 121. 

The application of the AD1 method to the calculation of multidimensional flow 
problems has flourished since the early seventies. Lindemuth and Killeen [ 131, and 
Briley and McDonald [ 141 independently devised closely related AD1 schemes to 
solve nonlinear flow problems. They used a formal linearization (Taylor series 
expansion in time) for the nonlinear terms and reduced a multidimensional problem 
to the noniterative solution of a number of block tridiagonal matrices which can be 
handled efficiently [ 151. Beam and Warming [ 16, 171 developed a similar scheme in 
delta form which has been widely applied in aerodynamical calculations [ 18, 191. 

Even though the AD1 method is popular in aeronautical calculations, its 
application to calculation of stratified flows is rare. Torrance (201 has used the AD1 
method to solve only the temperature equation in his computation of natural 
convection in a Boussinesq fluid. 

With a staggered mesh system, the AD1 scheme is stable without the need of 
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artificial viscosities [21]. This is a useful asset for studying problems in which the 
flow depends sensitively on the real viscosity (e.g., close to the onset of natural 
convection). Our program, which uses this scheme, has been successfully tested on 
computing convective rolls for a wide range of physical parameters. Steady state 
Mach numbers range from lo-’ to 0.3, depths of the layers up to 11 pressure scale 
heights, Courant numbers up to lo’, and time steps in excess of the stability 
restriction imposed by explicit treatment of diffusion by a factor of 103. 

In the next section, we shall describe our numerical methods in more detail. In 
Section III, we shall discuss some numerical experiments which test this scheme. 

II. NUMERICAL METHOD 

A. General Formulation 

Consider Cauchy problems of the following system of partial differential equations 
(PDE): 

a 
zip u =Fp u 

au, ah, 
q'ax,' ax,ax, I<P, q<N (1) 

where up are N dependent variables and x, (a = l,...) are the spatial coordinates. An 
implicit finite difference approach is to approximate Eq. (1) by the following 
difference equations [ 22, 231: 

(Id;+’ -$)/At =pF;+’ + (1 -P) F; + O(b) O<P< 1 (2) 

in which the superscript n is the time-step (cycle) number; /3 = 0 and 1 correspond to 
the forward (explicit) and backward (implicit) Euler time-differencing schemes, 
respectively. 

For convenience, we shall use the notations: 

D, U, = &,/ax, = Uqiu, Do4Uq = a2Uq/aXa aXb, AU;+’ = 14;” - U;, 

F = V’, v..., F,,J, x,x, =c x,x,. 
a 

Also, define the operator L@ to be 

gpq = w/auq) + taFp”iauq;,) D, + taqau,:,,) 4,. (3) 

The value of Fp at the advanced time step n + 1 can be obtained by the Taylor 
expansion 

F n+‘=F”+~Au”+1+O(Au)2. (4) 

Then difference equation (2) can be written as 

(1 - At/?CZ) Au”+’ = AtF” + O(At)2, (5) 

581/47/l-R 
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where 1 is the identity matrix. The numerical algorithm of solving the Cauchy 
problem involves the following steps: (1) Calculate the value of F” for the r.h.s. of 
Eq. (5) using known values of u”. (2) Solve linear equation (5) to obtain Au”+ ‘. 
(3) Update the value of u to the new time step by II”+’ = u” + Au”+’ and start a new 
cycle. Step 2 is a very laborious numerical process if the full linear system of 
equations are solved. The AD1 method uses an approximate splitting technique to 
decompose the matrix 1 - A@2 into a product of matrices which are much easier to 
solve. The principle is to separate the spatial differential operators of different 
directions to form block tridiagonal matrices which can be solved directly by efficient 
algorithms. In our approach, we use a sparse matrix algorithm instead of the usual 
block elimination method [ 151. The principles and the efficiencies of both methods 
are similar (see Section IIC). 

The cross derivative terms DaBuq (a #/I) pose a problem in the spatial splitting 
procedure. We follow the general practice of excluding them from the implicit 
treatment. This would not change the first-order accuracy of the temporal 
differencing. Moreover, the stability of the scheme is not seriously affected (see 
Section 1I.B). 

Let g,, and G= (a = l,...) be defined as 

The AD1 approximation of Eq. (5) can be written in the following form: 

,=g,... (1 - Af@s@J Au”+’ = AtF” + O(Ar)‘. (7) 

Notice that by carrying out the matrix multiplications on the 1.h.s. and formally 
ignoring (At)’ and higher order terms, one can obtain Eq. (5) (without the terms with 
cross derivatives). Sometimes, it is convenient (and natural) to absorb the terms of 
9,, into the ga’s (a # 0) so that an extra matrix inversion can be avoided. 

When the matrix equations of (1 - A@@,J are solved in successive steps, Eq. (7) 
represents a consistent discretization of Eq. (1). Alternative ways to choose the inter- 
mediate time steps between t” and t”+ i can be employed [ 16, 221. In those cases, 
however, one has to be careful whether the intermediate steps are consistent with the 
original equation. The lack of consistency would complicate the treatment of 
boundary conditions substantially (see [23] for a detailed discussion). 

B. Stability Analysis 

Suppose that ii is the exact solution of Eq. (7), the propagation of numerical errors 
e can be derived by linearizing the r.h.s. of 

F (1 - At/%Sa)(ii”+’ + en+’ - ii” - e’) = AtF(ii” + en,...) (8) 
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by means of Eq. (4). This gives 
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e *+I= 
[ 
n (1 -dt/923J -l 1 ( 1 + flfC3 -At/3 C 22= 

) 
e” + O(e’). (9) 

a LI 

If the standard central differencing is used for the spatial difference operators, the 
error amplification matrix for the amplitude of a Fourier component exp(ik,x,) of e 
is given by 

A = 
[ 

-1 
n (1 -Ll@qJ 
a I ( 

l+A@‘-At/3c@:, , 
) 

(10) 
(I 

where G2; and @’ are matrices generating by replacing D,, D,, , and D,, (a # /II) in 
Eqs. (3) and (6) with i sin(k, Ax,)/Ax, , -4 sin* (k, Ax,/2)/(Ax,)*, and -[sin 
(k, AxJAx,] [sin(k, Ax,)/Ax,], respectively. Since the value of k, can only take the 
form k, = x/f Ax,, where I > 1, sin(k, Ax,) can be equal to zero but sin* (k, AxJ2) 
must be > 0. Therefore, in the above quantities, the one associated with D,, (at 
middle) is always negative, the others can be positive, negative, or zero. This is an 
important property associated with dissipative terms and their stabilizing effect on 
implicit numerical schemes. 

For the scheme to be stable, the numerical errors must not grow. This requires that 
the absolute values of all eigenvalues of the amplification matrix be no greater than 
unity. Here we apply Eq. (10) to study the stability of some simple systems which 
illustrate important aspects of the compressible Navier-Stokes equations. 

As a first example, let us consider the following system which represents the 
occurrence of linear waves with viscous damping 

(11) 

in which d, , d, > 0. 
This one-dimensional system is relevant to problems with higher dimensions 

because the stability of individual components in an AD1 scheme can ensure the 
stability of the whole scheme and vice versa [ 111. 

Notice that if c, and c, are large, the matrix C8 is not diagonally dominated. 
For simplicity, let e 3 [2W,/&,,,] [4 sin*(k Ax/2)/Ax*], f E [ZF2/~v~,,] [4 sin* 
(k Ax/2)/Ax*], g = [#,/a~,,] [sin(k Ax)/A x ] , and h = [cYF,/c?u:,] [sin(k Ax)/Ax], then 
Eq. (10) can be written as 

A= 1 +A@e -iAt/?g -’ 1 +A@- 1)e -id@- 1)g 

[ -i A@h 1 + At/If 1 [ -id@- 1)h 1 1 +A@- 1)f ’ (12) 

The matrices in the numerator and denominator are simultaneously diagonalizable 
and the two eigenvalues of A are 

I 
f 

= 1 +iQ3- l)At{e+f* [(e-f)*-4gh]“*}* 
1 +fPAt{e+f* [(e-f)*-4gh]“*} (13) 
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In order that IA, 1 < 1, /3 must satisfy the following inequalities: 

P 2 i - ((e + .WWef+ gW for (e - f )’ < 4gh 

/I>+--(2/At{e+f+ [(e-f)*-4gh]“*}) for (e -f)’ > 4gh. 
(14) 

Since both e and f are positive, p > f is sufficient to make the scheme unconditionally 
stable-this result is generally true when all terms in a differential equation are 
treated implicitly. 

If the first-order spatial derivative terms (the wave terms) in Eq. (11) are not 
treated implicitly, the matrix 1 -/3 Atka is reduced to tridiagonal (instead of block 
tridiagonal). The scheme, however, will become unstable for any value of p when 
At > Ax/@, c,)“*. 

The main goal of this section is to examine the destabilizing effect of excluding the 
cross derivative terms from the implicit treatment of the Navier-Stokes equations. 
The following simplified system can represent the specific situation very well: 

au a* a* a* 
~=Pp+9-p+r-v, axay 

av a* a* a* 
(15) 

~=P-p+9,,u+r-u, axay 

where p, q > 0. When u and v are interpreted to be velocities, the r.h.s. of Eq. (15) 
exactly yields the viscous terms of the Navier-Stokes equations in two dimensions 
when p=jv1+v2, q=vl, and r=fv,+v,; v, and v, are the first and the bulk 
kinematic viscosities, respectively. We shall show that a sufficient condition for 
stability is 

P > 31 + (I~l/2(Pd”*)l> 4. (16) 

For the above system, 

g = PD,, + 9D*2 rD,2 

‘42 pD22 + d’,, I ’ 
(17) 

Let 

a = 4p sin2(k, Ax/2)/Ax* + 4q sin*(k, Ay/2)/Ay*, 

b 3 4p sin2(k, Ay/2)/Ay2 + 4q sin*(k, Ax/2)/Ax*, and 

c E r[sin(k, Ax)/Ax] [sin(k, Ay)/Ay], 

then 

-’ 
A= 

1 
+ A@a 

0 1 + 
(/3- 1)Ata 

-Ate 

0 1 + Atj3b 1 [ -Ate 1 +A@- 1)b 1 ’ (18) 
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Notice that the off-diagonal terms of the numerator do not contain p because they 
come from the explicit cross derivative terms. Since the denominator is a diagonal 
matrix, it can be inverted easily. To simplify manipulation, let us further define d = 
dfu/( 1 + L@?CZ) > 0, e = dtb/( 1 + dtpb) > 0, f E --dfc/( 1 + L@z), and g = -dtc/ 
(1 + dtpb), then the eigenvalues of A can be expressed as 

J,=f{2-(d+e)* [(d-e)2+4fg]1’2} (19) 

which are both real because fg > 0. The condition for stability is ]I + ] < 1 which is 
equivalent to 1, < 1 and 1- > -1. These conditions are equivalent to: (i) de > fg, 
(ii) 4 > d + e and (2 - d)(2 -e) 2 fg. A sufficient condition for (i) and (ii) to be 
satisfied is that d ) ] f 1, e > ] g], 2 - d > ] f ], 2 - e > ] g], simultaneously. When At is 
large, the last two inequalities are more stringent than the first two and we can limit 
our attention to only the last two inequalities. For /3, the last two inequalities become 

P 2 81 + ICI/~) - (l/Afa) and $(l + ICI/~) - (l/h). 

Since 4 sin2(k, Ax/2)/Ax2 > sin2(k, Ax)/Ax2 for k, = n/l Ax, l> 1 (same for y 
direction), 

14/a < Idl(P + 4z-7 and ICI/b < MP- + PI9 (20) 

where z E ] sin(k, Ax)/Ax ]/] sin(k, Ay)/Ay ]. As functions of z, the maximum values of 
the r.h.s. of (20) are both Irl/2(pq) ‘I2 Therefore, the sufficiency of condition (16) is . 
proved. For the Navier-Stokes equations in two dimensions, if v2 = 0, condition (16) 
becomes 

/3 > OS( 1 + 0.144) = 0.572. (21) 

Our numerical tests show that, most ,of the time, /3 can be chosen to be below this 
value and the program is still stable. The above inequality indeed only serves as a 
sufficient condition. 

In actual computation, it is desirable to choose a value of /I as close to 0.5 as 
possible. Sometimes, the convergence rate towards stationary solution can be 
enhanced this way. 

C. Manipulation of Matrices 

Not all of the matrices representing 1 -A@, are in block tridiagonal form 
originally. If the usual algorithm for solving block tridiagonal matrices is used, it is 
necessary to rearrange the arrays to put each of the matrices into block tridiagonal 
form. A more flexible way to solve these matrix equations is to use a sparse matrix 
technique (see [24, 251 and references therein). The matrices 1 - Atj35fm are of the 
general form of Scheme 1 in which X ... X represent blocks of nonzero matrix 
elements and the distances of the off-diagonal blocks to the diagonal are always 
equal. An important property of this kind of sparse matrix is that the LU decom- 
position of a nonsingular matrix has the form of Scheme 2 in which L ... L and 
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SCHEME 1 

l-J .w. U are lower and upper triangular blocks. Gaussian elimination of this type of 
matrices is as efficient as the usual block elimination method. Even though the extra 
indexing required by a sparse matrix technique introduces overhead on operations, 
this disadvantage is counterbalanced by the automatic full exploitation of the 
sparseness of the system. Furthermore, such an approach can be generalized to other 
spatial differencing schemes (e.g., five-point differentation; upwind differencing) 
without any change on the matrix operation part of a program. Our subroutine for 
solving the sparse linear equations is based on the scheme discussed by Gustavson 
[24]. We tested the accuracy of the subroutine on ill-conditioned matrices as extreme 
as ILlA - lo- l2 ]A,,,,, ] with satisfactory results. 

In our approach, the sparse matrices 1 - Ataka, and the indexing of their nonzero 
matrix elements are generated by a program called GENTRX [26]. Given two sets of 
discretized equations which represent the PDE in the two spatial directions, this 
program generates four subroutines in Fortran. Using symbolic differentiation, 
GENTRX creates two subroutines for computing the numerical values of the matrix 
elements at each time step. The other two provide indexing to keep track of the 
location of the nonzero elements. Before a calculation, the indexing routines are used 
(only once) to perform symbolic LU decomposition of the sparse matrices so that the 
process of solving the linear equations can be more efficient. 

With the help of program GENTRX and the sparse matrix approach, the coding 
effort of adopting new boundary conditions or even new discretization schemes is 
reduced by a large factor. The demand of a program on core memory is 

SCHEME 2 
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automatically reduced by the sparse matrix mode of storage. For example, a mesh 
with 22 x 27 grids in our program needs only 170 K byte for all the matrix elements 
(8 byte precision) and the indices. 

D. Discretization of the Navier-Stokes Equations 

We shall consider the Navier-Stokes equations in spherical coordinates (r, 44) 
with axial symmetry; gravity is along the radial direction. By assuming V@ = 0, the 
system is reduced to two dimensional. With the existence of gravity and 
complications due to geometry, the 2-D equations cannot be written in a strong 
conservative form [27]. It is still useful, however, to keep the equations as conserving 
as possible [28]. This is especially valuable when the grid spacing in some region of 
the fluid (mostly at the top of a stratified fluid) is not small compared to the scale 
heights of the physical variables in the vertical direction. To obtain good spatial 
resolution, it is necessary to implement a nonuniform mesh system. In our program 
this was realized by a coordinate transformation 

r = r(<) (22) 

in the r direction [29]. 
For convenience, let us define 

J = dr/d& A = Jr2 sin 0, D=Ap, E=Aa, 

M = ApV, T=Au, Q=As, (23) 

@’ = A@, P’ = 4, C’ = AC, K’ = AK, 

in which p is the density, E is the internal energy per unit volume, V is the velocity, u 
is the viscous stress tensor, q is the energy flux, @ is the internal energy production 
rate due to viscous dissipation, p, [ are the first and the bulk viscosities, and K is the 
conductivity. Furthermore, the following notation is used: 

a 1 a 
-=--9 
as r 8 (24) 

and the subscripts r and s are used to denote the r and 9 directions, respectively. 
Then the 2-D Navier-Stokes equations can be written as 

$E=-$ ($$)-p$ ‘(r’sin@%) 

-z(y)-p$Jr’sin@%)-$(%)-$Q,+@‘, (26) 
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M A4 a 7,, 
- -+f + z 

( 1 
J + $5,, + f (rsr - cot km@) 

where p is the pressure, g is the gravitational acceleration, and 

t*,= 2/l’ 
( 

~+cote~)+ (5’~fr’)(V.“), 

(27) 

(28) 

(29) 

where T is the temperature. The implicit treatment of the above equations contains 
the following terms: 
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0) in the s direction: 
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(ii) in the r direction: 

(31) 

Since our original purpose is to calculate convection in the Sun whose constituent 
is a nonideal gas which has very complicated thermodynamic behavior, we choose p 
and E (instead of $pV’ + E) to be among the basic dependent variables in our 
equations. This choice simplifies the handling of the thermodynamics in the program 
substantially. Since the internal energy E is not a conserved quantity, however, our 
energy equation is not in a conservative form. Therefore, truncation errors will affect 
the accuracy of total energy conservation of the system. In general, the ther- 
modynamic functions (in terms of p and E): p, T, (a~/+),, (i3p/iY~)~, @T/&I),, 
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FIG. 1. Distribution of dependent variablei on the staggered mesh. 

(cW/&),, P, <, and K are calculated at each time step by table interpolations, For an 
ideal gas, analytical formulas can be used: 

P= (Y- 1)s 

T= (Y- 1) &/PR, 

where y is the ratio of specific heats and R is the gas constant. 

(32) 

(33) 

The discretization of all the above expressions is carried out in a staggered mesh 
system which is essential for avoiding the development of two grid interval waves 
without artificial viscosity [30]. Furthermore, as stressed by Messinger and Arakawa 
[30], it has the virtue of providing the same amount of accuracy with half the effort 
of using a nonstaggered mesh system. The distribution of dependent variables in the 
mesh is shown in Fig. 1. Each coordinate cell in the mesh is indexed by (i, j) in the 
(19, <) directions and contains 4 locations (a, b, c, d) which are equally spaced in the 
o-direction from neighboring locations. The vertical spacing can also be equal, or 
other configurations could be used to increase resolution at certain levels. The four 
basic variables D, E, AI,, and M, are located at a, a, b, and c, respectively. Auxiliary 
variables are functions of these four and are defined at other locations by averaging 
whenever required. For example, the 8 component of velocity at location c is written, 

V,,(i, j) = l Wi9 .i) M,(i,j + 1) 
2 D(i,j)+D(i+ l,j)+ D(i,j+ l)+D(i+ Lj+ 1) 

M&i - 1, j) M,(i- l,j+ 1) 
+D(i,j)+D(i- l,j)+D(i,j+ l)+D(i- I,j+ 1) 1 (34) 

and the discretization of the term a( V,M,)/& in the radial momentum equation takes 
the following form at the (i, j)th cell: 

[V,,(i+ l,j)M,(i+ Lj) - V,,(i- Lj)M,(i- 19Al/24, (35) 
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where As, = r,(j) AB. At the beginning of each cycle, all the auxiliary variables are 
defined for the convenience of calculating the r.h.s. of Eqs. (25~(28) and the matrix 
elements later. 

III. COMPRESSIBLE NATURAL CONVECTION IN AN ENCLOSED CONTAINER 

Computation of compressible natural convection is a sensitive test on the accuracy 
and stability of a numerical method. In particular, the following points are 
noteworthy: (i) The onset of cellular convection depends very sensitively on the 
viscosity (or the Rayleigh number) and the boundary conditions. Introduction of 
artificial viscosity could shift the critical Rayleigh numbers to values much higher 
than the true ones. (ii) Conservation of mass in the enclosed container is very 
important, especially when the density near the top is very small compared to that 
near the bottom due to stratification. (iii) Physically, as well as numerically, a pertur- 
bation (or error) tends to grow much larger at the upper layers. Therefore, it is 
necessary to have an accurate approximation of the spatial dependence of the 
variables to avoid the development of catastrophic transients introduced by inexact 
initial conditions. An accurate spatial differencing is also important for the correct 
description of the subtle balance of viscosity and bouyancy which drives the 
convection. In our approach, central differencing provides good spatial accuracy and 
staggered mesh allows placing p and E between the boundary and the nearest interior 
velocity grid points to improve stability at the boundary. Furthermore, mass is fully 
conserved in our discretization scheme. 

In order that comparison can be made with previous results, we study the 2-D 
compressible convection of an ideal gas whose original distribution is polytropic. The 
lipear stability of this problem has been studied by Spiegel [3 1] and Vickers [32]. A 
detailed numerical treatment of the nonlinear problem has been documented by 
Graham [33]. The numerical method employed by Graham was a modified two-step 
Lax-Wendroff scheme which suffers from both the Courant condition and the 
condition imposed by the explicit treatment of diffusion. As a result, most of his 
computations were limited to flows with Mach numbers 2 0.1 and low values of layer 
thickness (see IIIB). 

A. Definition of the Problem 

Consider an ideal gas confined in a box with 8, < 8 Q &, and r, < r < r2. The 
boundary conditions are 

T=T,,T, at r=r,,r2 (36) 

and 

at e=e,,e,. (37) 
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We shall assume that the gas has constant specific heats (C,, C,), coefficients of 
viscosity (,D, Q, and conductivity (K). The initial distribution of the gas is taken to be 

T/T, = 1 + Z((r, - r)/(rz - r,)), (38) 

P/P, = VITJ”~ (39) 

PIPS = (TITJ? (40) 

where m, the polytropic index, and Z E (T, - TJT,, the normalized thickness 
parameter, are constants. This represents a static solution of the Navier-Stokes 
equation with a uniform gravitational acceleration 

g=(m+ l)ZRT,/(r,-rr,). (41) 

To put the problem in dimensionless form, we scale the variables such that T, , pz, 
P,, and tt at the upper boundary are all unity. In all our calculations we choose 
(r, - r,) = (0, - 6,) < 0.01, and 8, = 7r/2 so that the box approaches a square (aspect 
ratio = 1) and the results can be compared with those obtained by Graham. The 
value of m, the ratio of specific heats, and the Prandtl number Pr E C&K will be 
fixed to be 1.4, 5/3, and 1, respectively. Therefore, the only free parameters left to 
specify the problem are Z, [/,u, and the Rayleigh number at the top 

Ra = (PrgW, - rJ3/CU2/d))Kl - (Y - 1) m)hl. (42) 

B. Numerical Results 

Our first task was to study the ability of the .present program to determine the 
critical Rayleigh number for the onset of convection in a 2-D square. As initial 
perturbation, a very small vertical velocity field was introduced to the fluid (with 
c = 0), and its evolution was followed by the program (using a 22 x 42 uniform 
mesh) to determine whether the perturbation was growing or damping. After a few 
trials the critical Rayleigh number above which convection starts can be determined. 
Our results (small circles) are compared with those obtained by linear stability 
analysis computed by Graham (broken line) in Fig. 2. The agreement is better than 
5% in all cases. The short solid line indicates the value of the critical Rayleigh 
number for a Boussinesq fluid [34]. At a small value of Z (0.1) we found the critical 
Rayleigh number very close (5 2.5% away) to this value [3 11. 

Generally, the critical Rayleigh number we found is slightly higher than those 
obtained by linear stability theory. Tests show that a coarser mesh (22 x 27) causes 
the critical Rayleigh number to move a few percent farther from the ideal value. This 
indicates that the truncation errors in our spatial discretization tend to hinder the 
convective motion. 

A comparison of maximum Mach numbers (M,,,) in stationary convective cells is 
shown in Fig. 3 for cases with Z = 1, [ = 0. The agreement is quite good even though 
our values are slightly lower than those of Graham. This again can be ascribed to the 
hindering effect of the spatial truncation errors. 
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FIG. 2. Comparison of theoretical and computed values of critical Rayleigh numbers Ra, at 
different thickness of stratification (Z): (---), critical Rayleigh numbers predicted by linear stability 
analysis; (0), results computed by the ADI program. 

An interesting property of compressible convection can be observed in Fig. 3. A 
large range of Rayleigh numbers produces flow speeds which make compressible 
effects nonnegligible. Only a tiny range of Rayleigh numbers above the critical value 
produce really small Mach number flows. This phenomena persists for all other 
values of Z that we tested. 

Since our program is able to handle unequal grid spacing in the vertical direction, 
we can obtain good resolution to study highly stratified cases (large Z). As an 
example, we describe here a case with Z = 18, Ra = 50, and C/P = 5; the ratio of 
pressure between the bottom and the top is greater than lo3 (z 7 scale heights). 
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FIG. 3. Comparison of maximum Mach numbers at different Rayleigh number for Z= 1. (---), 
results inferred from Graham’s paper; (0) results computed in the present study. The downward pointing 
arrow indicates the location of the critical Rayleigh number. 
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9 x 37 UNIFORM 
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V max 9 x 22 UNIFORM 

- .l 

FIG. 4. Transients of the growth of V,,,,, to stationary values for different mesh systems. The 9 x 37 
nonuniform case has an initial velocity distribution slightly different from the others. 

Three mesh distributions have been used for the computation: (i) a 9 x 37 mesh with 
unequal grid spacing, approximately 5 grid points per pressure scale height. (ii) a 
9 x 37 uniform mesh. (iii) a 9 x 22 uniform mesh. 

Let us define the following dimensionless numbers which specify how much the 
time step in our program violates the stability conditions of explicit methods: 

and 

N cFL = AtC$Ax (Courant number) (43) 

N, = Atv/Ax2, (44) 

where C, is the local sound speed, Ax is a local grid spacing, and v is the kinematic 
viscosity. The transients of the calculations are illustrated in Fig. 4 by the maximum 
flow speed V,,,,, which is given in units of (p2/p2) “2. The time steps used yield the 
following maximum values of (NcFL, N,) respectively: (0.5, 108), (2.7, 17.2), 
(1.6, 5.9). Starting with a value of about IO-‘, the maximum flow speeds grow 
exponentially until asymptotic values are approached. The stationary values of all 
three cases agree to within 2.5% of each other. There are two reasons for the 
discrepancy of the asymptotic values of V,,,,, between the uniform and nonuniform 
meshes. One reason is that the nonuniformity of a mesh introduces more truncation 
errors. Another reason is that, near the bottom of the box, the vertical grid spacing of 
the nonuniform mesh happens to be wider than those of the uniform meshes (more 
than 1.14 times). The stationary distribution of the velocity field of mesh (i) is shown 
in Fig. 5. 

The above runs indicate that the uniform and coarser grids produce results quite 
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FIG. 5. The stationary velocity field of the 9 x 37 nonuniform case. The refined resolution clearly 
shows that the horizontal velocity decreases slightly near the top. 

FIG. 6. Stationary distributions of the horizontal means of p (-), p (---), and T (- .-) versus height 
from the bottom. The uniform and nonuniform meshes produce almost identical results. 
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close to those with refined spatial resolution. To test this point further, we have 
computed cases with Z = 100, [/,u = 3, and Ra = 2 using 9 x 31 and 9 x 22 uniform 
meshes; results are in agreement to within 6% of each other. In regimes where the 
stationary values of V,,, fall below 0.0 1, however, agreement deteriorates quickly 
(2 25%) with the coarser grid generally yielding a lower value of stationary V,,,,,. 

It is useful to compare the 9 x 37 uniform and nonuniform spacing cases in more 
detail. The distributions of the horizontal means of p, p, and T are given in Fig. 6. 
The two cases give almost identical distributions. Comparison of values using inter- 
polation shows that the relative differences are less than 1.5 % everywhere; agreement 
improves tenfold near the bottom. This does not mean, however, that the finer spatial 
resolution can be discarded completely. When we plot the root-mean-square 
horizontal fluctuations of p, p, and T as shown in Fig. 7, the high resolution case 
shows spikes for p and p near the top of the fluid which were not clearly 
demonstrated by the equal spacing case. The existence of these spikes is related to the 
fact that the horizontal velocity decreases near the top as shown in Fig. 5. The 
pressure fluctuation is induced by the strong viscous stress of this shearing motion; 
the density follows the pressure fluctuation closely since the efficient conduction 
keeps the temperature fluctuation small at the top. 

HEIGHT FROM BOTTOM - HEIGHTFROM BOTTOM - 

FIG. 7. Horizontal rms fluctuations of: p (-), p (---), and T (...) for (a) 9 x 37 nonuniform mesh 
(b) 9 x 37 uniform mesh. Vertical scale is in percentage. 



ADI ON A STAGGEREDMESH 127 

IV. SUMMARY AND DISCUSSION 

In summary, the AD1 and the staggered mesh work well with each other in 
providing an efficient and accurate implicit scheme for treating stratified flows. Due 
to the ability of taking large time steps, we can compute very subsonic flows for 
natural convection in a highly stratified medium without the introduction of 
Boussinesq or anelastic approximations whose assumptions were shown to be easily 
violated by compressible convections. The staggered mesh helps the accuracy of the 
scheme by avoiding the introduction of artificial viscosities; it also makes the 
handling of boundary conditions an easier job. The employment of the sparse matrix 
approach for solving the block tridiagonal matrices facilitates the adoption of new 
boundary conditions and even new discretization schemes. 

Through the test cases, we verify that our approach is able to closely reproduce 
previous results obtained by other approaches (analytical as well as numerical 
computation using an explicit scheme). 

Whether it is necessary to employ refined spatial resolution for highly stratified 
fluids depends on the objective of a computation. We have demonstrated that the 
gross features of convective flows are not seriously affected by a, rough spatial 
resolution at the top. If a refined treatment can be skipped, a lot of computational 
effort can be saved. On the other hand, we have found that a good spatial resolution 
is very essential near the base of the fluid where most mass, energy, and momentum 
reside. 

All the above computations were performed by a VAX 1 l/780 machine and the 
grind time (CPU per cycle per grid point) is about 7 msec (corresponding to 
- 1.4 msec in IBM/360/9 1) which includes overhead due to page faults (=: lO-20%) 
caused by the limited usage of physical memories (150-350 K bytes). Eliminating the 
matrix generation and inversion in our program would make the scheme explicit, then 
the grind time is about $ of the above value. The implicit scheme, however, has 
allowed us to operate with time steps hundreds of times larger than in an explicit 
approach; thus it is much more economical. Our program carries a lot of burden for 
the intended application to nonideal gases which is unnecessary for computing perfect 
gases. Therefore, a reduction in the grind time can be obtained if the code is 
specialized and optimized further. Since our present interest is to sort out the 
fundamentals, however, this effort was not carried out in our study. 

Compared to other implicit schemes, an advantage of the AD1 approach is that it 
is noniterative. Therefore, the grind time is a constant independent of the number of 
grid points. This property is vital for computations which require big meshes. 

An important problem concerning the AD1 approach is the time accuracy of 
computing transients. When both NcFL and N, % 1, the AD1 approach loses time 
accuracy completely, even though the steady state can eventually be recovered. On 
the other hand, we have some favorable experience with its time accuracy when NCFL 
is moderately larger than 1 (below 10). However, our present understanding of this 
aspect is very incomplete; this question will be taken up in a later study. 
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